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Abstract: The aim of index-tracking approaches in portfolio optimization 

is to create a mimicking portfolio which tracks a specific market index. However, 
without regularization, this mimicking behavior of the index-tracking model is 

susceptible to the volatility in the market index and has negative effects on the 

tracking portfolio. We recast the index-tracking optimization problem by applying 

a form of regularization using the convex combination of 𝑙1 and squared 𝑙2 norm 

constraints on the portfolio weights. The proposed optimization model enables us 

to control the tracking performance and the sparsity structure of the portfolio 

simultaneously. A sample of assets from Borsa Istanbul (BIST) is used to 
demonstrate the performance of the regularized portfolios with various levels of 

regularization. Results indicated that the regularized portfolios obtained using this 

approach had better tracking performances with a desired sparsity structure 
compared to the standard index-tracking portfolio where no regularization is 

applied. 

Keywords: Index-tracking, Portfolio optimization, Regularization, 
Portfolio management. 

JEL Classification: C100, C610 

1. Introduction 

The foundations of the modern portfolio theory were laid by Harry 

Markowitz in 1950s. In the Markowitz's mean-variance portfolio theory, a mean-
variance efficient portfolio is the one that has minimum variance for acceptable 

expected return or maximum expected return for acceptable variance among the 

possible portfolios. Allowing a unique efficiency frontier, Markowitz's model aims 
to minimize an objective function in order to obtain a mean-variance efficient 

portfolio where the variance is used as a risk measure (Jacobs et al., 2005). In the 

graph of the standard deviations of possible portfolios against the expected returns, 

any portfolio associated with a point on the efficient frontier curve is an optimum 
combination of assets which maximizes the return for a specific risk (standard 
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deviation). The points in the area restricted by the curve have more risk for the 

same return or less return for the same risk. His work in portfolio theory provided 
him to win the Nobel Memorial Prize in Economic Sciences in 1990. Real world 

restrictions have led to the development of Markowitz mean-variance portfolio 

theory and proposal of new alternative models. Some of these models are applied 

by adding constraints such as buy-in threshold (quantity constraint), cardinality 
constraint and budget constraint (investment constraint), or by adding other 

additional constraints. DeMiguel et al. (2009) improved a strategy that includes 

constraints on the norm of the portfolio weight vector due to estimation errors 
resulting from sample means and covariances of the asset returns. They defined the 

1-norm-constraint as ‖𝑤‖ ≤ 𝛿 and A-norm-constraint as ‖𝑤′𝐴𝑤‖ ≤ 𝛿 where 𝛿 is a 

certain threshold, and they compared their norm-constrained approaches with the 

previous studies in the field and showed that there are certain correspondence 
between these studies. 

Other studies tried to deal with the problems related to the computational 
complexity. Konno and Yamazaki (1991) developed the MAD (mean-absolute 

deviation) model using linear programming instead of quadratic programming 

since the standard deviation was replaced with the absolute deviation as a measure 
of dispersion. Based on linear programming, there are also other portfolio models 

such as MSAD (mean-semi absolute deviation) (Kamil and Ibrahim, 2005) and 

interval linear programming model (Şerban et al., 2015). Once again, in order to 

overcome the computational difficulties in estimating the covariance between each 
pair of assets when dealing with large amount of assets, Sharpe (1963) developed 

the single-index model based on a linear relationship between the return of an asset 

and a specific market index. Single-index models were followed by multi-index 
models, factor models and scenario models (Markowitz and Perold, 1981; Jacobs 

et al., 2005). 

Index-tracking problem has also been studied in portfolio optimization. 

Many of these studies first transform the original optimization problem into the 

setting of the targeted optimization method and then try to solve the final 

optimization problem using the tools specific to that method. Some examples are 
heuristic (Beasley et al., 2003; Takeda et al., 2013) and metaheuristic (di Tollo and 

Maringer, 2009) approaches, mixed-integer linear programming (Guastaroba and 

Speranza, 2012), support vector machines (Karlow, 2013; Marcelino et al., 2015), 
hybrid genetic algorithms (Eddelbüttel, 1996), and multi-objective optimization (Li 

et al., 2011). However, there are not so many studies on regularization in index-

tracking problem. For instance, Brodie et al. (2009) proposed to add 𝑙1 penalty to 
the objective function for partial index tracking. Giamouridis and Paterlini (2010) 

used Lasso and Ridge regression to apply 𝑙1 or 𝑙2 norms in order to regularize 

hedge fund clones. Takeda et al. (2013) developed an index tracking model based 

on 𝑙0 and 𝑙2 penalties. Yen and Yen (2014) applied a weighted 𝑙1 and 𝑙2 norms in 
mean-variance portfolio optimization problems using coordinate-wise descent. 
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This paper follows a related, but different, approach to apply a convex combination 

of 𝑙1 and 𝑙2 norms on the index tracking problem. 

2. General framework 

We consider a portfolio of 𝑛 assets. Denote the return on asset 𝑖 by 𝑟𝑖, its 

mean by 𝜇𝑖 and its variance by 𝜎𝑖. Let 𝜎𝑖𝑗 be the covariance between the returns of 

assets 𝑖 and 𝑗. The variance-covariance matrix of returns is denoted by Σ which is 

widely used. The investment rate of asset 𝑖, that is, the weight of the asset is 

denoted by 𝑤𝑖. Denote the row vector containing the weights by 𝑤𝑇 =
(𝑤1, … , 𝑤𝑛). The beta of an individual asset measuring systematic risk is denoted 

by 𝛽𝑖 =
𝜎𝑖𝑀

𝜎𝑚
2  where 𝜎𝑖𝑀 is the covariance between the asset return and market index 

return and 𝜎𝑀
2  is the variance of the market index return. The vector of individual 

asset betas is denoted by 𝛽. 

In traditional index-tracking approach, it is desirable for the created 
portfolio to have as much return as the target market index (or target portfolio) 

while minimizing transaction costs. Tracking error, the variance of the difference 

between the portfolio return (𝑟𝑃) and the target market index return (𝑟𝑀), is 

defined as 

   
𝑉𝑎𝑟(𝑟𝑃 − 𝑟𝑚) = 𝜎𝑃

2 + 𝜎𝑀
2 − 2𝐶𝑜𝑣(𝑟𝑃, 𝑟𝑀)

= 𝜎𝑃
2 + 𝜎𝑀

2 − 2𝜎𝑀
2 𝛽

  (1) 

where 𝜎𝑃
2 is the variance of the portfolio return. Index-tracking problem is to 

minimize 𝜎𝑃
2 − 𝜎𝑀

2 𝛽 subject to 𝜇𝑡𝒘 = 𝑚 and 𝟏𝑇𝒘 = 1 since the index variance is 

independent of the portfolio weights. 

2.1. Regularized index-tracking optimization model 

Index-tracking portfolios without regularization have a strict mimicking 
behavior of the target market index. This makes it susceptible to the volatility in 

the market index and has negative effects on the tracking portfolio. In order to 

overcome this problem, a form of regularization has to be applied on the portfolio 

weights. There are 3 types of norm constraints in general, 𝑙0, 𝑙1  and 𝑙2, used in 

previous studies in various settings. 𝑙0 norm mitigates these negative effects by 

restricting the number of assets in the portfolio, but it involves combinatorial 

optimization and can become mathematically intractable when 𝑛 is large. On the 

other hand, 𝑙1 norm constraint is a convex function of 𝒘 and can also preserve 

sparsity in the portfolio. Furthermore, 𝑙2 norm helps to avoid extreme portfolio 

weights by penalizing the size of the portfolio weights. Therefore, in order to 

benefit from the advantages of both norm constraints simultaneously, we propose 
to regularize the standard index-tracking problem by applying a convex 
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combination of the 𝑙1 and squared 𝑙2 norm constraints on the portfolio weights. 

The new optimization problem becomes as 

       

minimize
𝐰

𝐰𝑇Σ𝐰 − 2𝜎𝑀
2 𝛽𝑇𝐰 + 𝐶(𝛼‖𝐰‖𝑙1

+ (1 − 𝛼)‖𝐰‖𝑙2

2 ),

subject to 𝜇𝑇𝐰 = 𝑚

𝟏𝑇𝐰 = 1.

   (2) 

𝐶 ∈ 𝑅+ is a regularization parameter which controls the trade-off between the 

variance of the tracking error and the effect of the penalties on the portfolio 

weights. 𝛼 ∈ [0,1] is the weight parameter which adjusts the relative weight of the 

𝑙1 and squared 𝑙2 norms. When 𝛼 = 0, the portfolio weights are regularized by the 

squared 𝑙2 norm ‖𝐰‖𝑙2

2  only, when 0 < 𝛼 < 1, 𝑙1 norm ‖𝐰‖𝑙1
 constraint is applied 

with the regularized covariance matrix Σ
𝑅 = Σ + 𝐶𝐼𝑛×𝑛, and when 𝛼 = 1, the 

portfolio weights are regularized by the 𝑙1 norm ‖𝐰‖𝑙1
 only. The constraint 𝜇𝑇𝐰 =

𝑚 is the target mean return constraint with the target mean return 𝑚, and 𝟏𝑇𝒘 = 1 
is the endowment constraint. 

The Lagrangian corresponding to the optimization problem (1) is 

 

𝐿(𝐰, 𝜆, 𝛾; Σ, 𝐶, 𝛼) = 𝐰𝑇Σ𝐰 − 2𝜎𝑀
2 𝛽𝑇𝐰 +

𝐶𝛼‖𝐰‖𝑙1
+ 𝐶(1 − 𝛼)‖𝐰‖𝑙2

2 −

𝜆(𝜇𝑇𝐰 − 𝑚) − 𝛾(𝟏𝑇𝐰 − 1)

= 𝐰𝑇Σ𝐰 + ∑ (−2𝜎𝑀
2 𝛽𝑖𝑤𝑖 + 𝐶𝛼|𝑤𝑖| +

𝑛

𝑖=1

𝐶(1 − 𝛼)𝑤𝑖
2 − 𝛾𝑤𝑖 − 𝜆𝜇𝑖𝑤𝑖) + 𝜆𝑚 + 𝛾.

  (3) 

The KKT conditions for the Lagrangian (2) are 

2𝑤𝑖𝜎𝑖
2 + 2 ∑ 𝑤𝑗𝜎𝑖𝑗 + 2𝐶(1 − 𝛼)𝑤𝑖 − 𝛾 − 𝜆𝜇𝑖

𝑛

𝑗≠𝑖
= 2𝜎𝑀

2 𝛽𝑖 − 𝐶𝛼 if 𝑤𝑖 > 0,

2𝑤𝑖𝜎𝑖
2 + 2 ∑ 𝑤𝑗𝜎𝑖𝑗 + 2𝐶(1 − 𝛼)𝑤𝑖 − 𝛾 − 𝜆𝜇𝑖

𝑛

𝑗≠𝑖
= 2𝜎𝑀

2 𝛽𝑖 + 𝐶𝛼 if 𝑤𝑖 < 0,

|2 ∑ 𝑤𝑗𝜎𝑖𝑗 − 𝛾 − 𝜆𝜇𝑖

𝑛

𝑗≠𝑖
| ≤ 2𝜎𝑀

2 𝛽𝑖 + 𝐶𝛼 if 𝑤𝑖 = 0,

𝜇𝑇𝐰 = 𝑚,

𝟏𝑇𝐰 = 1.

  (4) 

From the KKT conditions (3), it can be shown that when 𝑤𝑖 ≠ 0, at the stationary 

point 
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𝑤𝑖 =
𝛾+𝜆𝜇𝑖−𝑧𝑖+2𝜎𝑀

2 𝛽𝑖−𝐶𝛼

2(𝜎𝑖
2+𝐶(1−𝛼))

,  if 𝑤𝑖 > 0,

𝑤𝑖 =
𝛾+𝜆𝜇𝑖−𝑧𝑖+2𝜎𝑀

2 𝛽𝑖+𝐶𝛼

2(𝜎𝑖
2+𝐶(1−𝛼))

,  if 𝑤𝑖 < 0,
    (5) 

where 𝑧𝑖 = 2 ∑ 𝑤𝑗𝜎𝑖𝑗
𝑛
𝑗≠𝑖 . Let 𝑆+ = 𝑖: 𝑤𝑖 > 0 and 𝑆− = 𝑖: 𝑤𝑖 < 0, then we know 

that 

𝟏𝑇𝐰 = 𝛾 (∑
1

2(𝜎𝑖
2+𝐶(1−𝛼))𝑖∈𝑆+∪𝑆−

) + ∑
𝜆𝜇𝑖−𝑧𝑖+2𝜎𝑀

2 𝛽𝑖

2(𝜎𝑖
2+𝐶(1−𝛼))𝑖∈𝑆+∪𝑆−

+

𝐶𝛼 (∑
1

2(𝜎𝑖
2+𝐶(1−𝛼))𝑖∈𝑆−

− ∑
1

2(𝜎𝑖
2+𝐶(1−𝛼))𝑖∈𝑆+

) ,

𝜇𝑇𝐰 = 𝛾 (∑
𝜇𝑖

2(𝜎𝑖
2+𝐶(1−𝛼))𝑖∈𝑆+∪𝑆−

) + ∑
𝜆𝜇𝑖

2−𝜇𝑖𝑧𝑖+2𝜎𝑀
2 𝜇𝑖𝛽𝑖

2(𝜎𝑖
2+𝐶(1−𝛼))𝑖∈𝑆+∪𝑆−

+

𝐶𝛼 (∑
𝜇𝑖

2(𝜎𝑖
2+𝐶(1−𝛼))𝑖∈𝑆−

− ∑
𝜇𝑖

2(𝜎𝑖
2+𝐶(1−𝛼))𝑖∈𝑆+

) .

  (6) 

For a given 𝜆, using 𝒘𝑇𝟏=1, 𝛾 can be found as 

𝛾 =

1−∑
𝜆𝜇𝑖−𝑧𝑖+2𝜎𝑀

2 𝛽𝑖

2(𝜎𝑖
2+𝐶(1−𝛼))

𝑖∈𝑆+∪𝑆−

−𝐶𝛼(∑
1

2(𝜎𝑖
2+𝐶(1−𝛼))

𝑖∈𝑆−

−∑
1

2(𝜎𝑖
2+𝐶(1−𝛼))

𝑖∈𝑆+

)

(∑
1

2(𝜎𝑖
2+𝐶(1−𝛼))

𝑖∈𝑆+∪𝑆−

)

  (7) 

Similarly, by 𝒘𝑇𝝁 = 𝑚, for a given 𝛾, we have 

𝜆 =

𝑚−∑
𝜇𝑖(𝛾−𝑧𝑖+2𝜎𝑀

2 𝛽𝑖)

2(𝜎𝑖
2+𝐶(1−𝛼))

𝑖∈𝑆+∪𝑆−

−𝐶𝛼(∑
𝜇𝑖

2(𝜎𝑖
2+𝐶(1−𝛼))

𝑖∈𝑆−

−∑
𝜇𝑖

2(𝜎𝑖
2+𝐶(1−𝛼))

𝑖∈𝑆+

)

(∑
𝜇𝑖

2

2(𝜎𝑖
2+𝐶(1−𝛼))

𝑖∈𝑆+∪𝑆−

)

  (8) 

We followed Yen and Yen (2014) to adapt the coordinate-wise gradient descent 

algorithm to solve the regularized index-tracking problem iteratively. Assuming 

that 𝜆 and 𝛾 are fixed, each 𝑤𝑖 is updated according to the following formula 

                                           𝑤𝑖 ←
𝑆𝑇(𝛾+𝜆𝜇𝑖−𝑧𝑖+2𝜎𝑀

2 𝛽𝑖,𝐶𝛼)

2(𝜎𝑖
2+𝐶(1−𝛼))

    (9) 
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where 𝑆𝑇(𝑥, 𝑦) = 𝑠𝑖𝑔𝑛(𝑥) max(|𝑥| − 𝑦, 0). Weights are initialized with 𝑤1 =
𝑤2 = ⋯ = 𝑤𝑛 = 𝑛−1, and 𝛾 and 𝜆 are chosen to satisfy 𝛾 + 𝜆 max

𝑖
𝜇𝑖 +

2𝜎𝑀
2 max

𝑖
𝛽𝑖 > 𝐶. The weights, 𝛾 and 𝜆 are updated sequentially until |𝑤𝑘+1 −

𝑤𝑘| < 𝜖. 

3. Empirical results 

Let us now consider constructing a portfolio consisting of 18 assets. For 

each asset, we used the monthly price data from Borsa Istanbul (BIST) for the 

period starting from January 2009 until June 2013. These assets were selected 
among the most 20 active assets. Two of the assets were not used due to lack of 

data, therefore 18 assets were included in the study. BIST 100 index was used as 

the target market index for tracking. We set the target mean return equal to the 

BIST-100 index mean return in the training period (𝑚 = 2.54). Table 1 provides 

the expected returns, standard deviations and betas for the selected assets. 

Table 1. Statistical parameters of monthly asset returns 

Asset 𝜇 𝜎 𝛽 

Akbank 2.11 10.37 -0.08 
Bim 3.49 7.04 0.17 

Besiktas Futbol Yatirim 4.57 25.58 0.87 

Eregli Demir Celik 1.38 9.35 0.39 

Garanti 2.93 11.49 0.04 
Halkbankasi 3.33 13.06 0.05 

Is Bankasi (C) 2.23 10.28 0.24 

Koc Holding 3.54 11.16 0.16 
Kardemir (D) 3.55 11.01 0.35 

Petkim 2.54 9.77 0.46 

Sabanci Holding 2.81 11.47 0.25 
Turkcell 0.87 6.61 0.12 

Turk Hava Yollari 5.29 12.55 0.42 

Tupras 3.12 9.19 0.08 

Vakifbank 3.50 13.30 0.14 
Vestel 2.63 13.68 0.37 

Yapi ve Kredi Bankasi 2.05 11.81 0.08 

Zorlu Enerji 1.83 14.79 0.75 

First of all, the data were divided into two groups such as train and test. 

We used the first 42 months for training, and the last 12 months for testing. 𝐶 and 

𝛼 were selected from {0,1,10,100,100} and [0,1] respectively. For a given 𝐶 and 

𝛼, optimal portfolio was found using only the training period and the performance 

of the optimal portfolio was evaluated on the test period. We also performed 

another parameter search for 𝐶 and 𝛼 in a higher precision, we created a 2-D grid 
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for the parameters where 𝐶 ∈ [0,1000] and 𝛼 ∈ [0,1] again, but with uniformly 

spaced values incremented by 0.1. However, there were not any significant 

differences from the previous setting. Therefore, without loss of generalization, 
tracking performances of the regularized portfolios are summarized in Figure 1 for 

specific values of 𝐶 and 𝛼. Cumulative monthly returns of the regularized 

portfolios are demonstrated with respect to the index returns. There is not any 

regularization on the portfolio when 𝐶 = 0, and this corresponds to the standard 

index-tracking portfolio. When 𝐶 > 0, a specific regularization is applied to the 

portfolio weights in the convex combination of 𝑙1 and squared 𝑙2 norm constraints 

weighted by the parameter 𝛼. Results showed that, all portfolios are tracking the 
index successfully in the training period, however, portfolios with little or no 

regularization are began to deviate from the index significantly in the test period. 

Portfolios with moderate regularization have a more determined attitude which is 

much more desirable compared with the other portfolios. That is, portfolios with 
no or less regularization have more fluctuations in the test period of tracking. Thus, 

regularized portfolios are much more robust to the volatilities in the market index. 
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       Figure 1. Cumulative monthly returns of regularized portfolios and the 

                     market index 

 

Considering 𝛼, root mean square error (rmse) between the cumulative 

portfolio and the index returns becomes a little larger as 𝛼 increases. The changes 

in the portfolio weights are plotted against different levels of (𝐶, 𝛼) in Figure 2. 

One can figure out how the convergence characteristics of the portfolio weights are 

differed with respect to different magnitudes of 𝐶 and different forms of 

regularization (specified by 𝛼). When 𝛼 = 0, portfolio weights are regularized by 

𝑙2 norm only, and proportion of active assets (PoA) always equal to 1, i.e., all 

assets are active, but proportion of short-sales (PoS) decreases as 𝐶 increases. 

There are no short-sales when 𝐶 becomes very large. In the case of 𝛼 = 1, 

portfolio weights are regularized by 𝑙1 norm only, and as 𝐶 increases up to a 

certain value, PoS decreases to 0 and PoA decreases to a certain small value. No 

changes are observed in PoA and PoS after this level of 𝐶. In other words, 

portfolio weights are stabilized at a specific level of 𝐶, the majority of the weights 
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are converged to 0 and the number of active assets are limited to a relatively small 

number. This facilitates a certain sparsity structure in the portfolio. 

For the case of 𝛼 = 0.5, regularized portfolio tries to satisfy both 

objectives given in the above settings (𝛼 = 0,1). PoA decreases up to a certain 

level, but then increases as 𝐶 gets much larger. On the other hand, as 𝐶 increases, 

PoS decreases to 0 at a certain level of 𝐶 and remains constant after this level. This 

choice of 𝛼 plays a balancing role between the two settings. 
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Figure 2. Portfolio weights, proportion of active assets (PoA) and proportion 

                 of short-sales (PoS) according to different levels of regularization 

 

According to the Sharpe ratio, the best regularized portfolio is the one with 

𝐶 = 100 and 𝛼 = 0. All regularized portfolios with various 𝛼 levels have smaller 

standard deviations of monthly returns than the standard portfolio has (𝐶 = 0). 

Standard deviation of monthly returns drops as 𝐶 gets larger at all levels of 𝛼. 

When 𝐶 is around 100, it stabilizes and then increases a little as 𝐶 gets much larger 

(𝐶 = 1000). 
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Figure 3. Sharpe ratio and std. of monthly portfolio returns according to 

                    different levels of regularization 

 

4. Conclusion 

Investors may have several goals in creating portfolios. An investor wants 

a portfolio that keeps track of a certain index with a specified return while others 

want a portfolio that minimizes transaction costs. Another investor wants to have 
both goals accomplished up to a certain level. Therefore, this paper proposes a 

well-defined flexible regularized optimization model for the index-tracking 

problem where one can control the tracking performance and the sparsity of the 

portfolio simultaneously by controlling the weight parameter 𝛼. This provides a 

stabilizer between 𝑙1 norm and squared 𝑙2 norm penalties on the index-tracking 

problem. 

We do not suggest any optimal regularization parameter 𝐶 and weight 

parameter 𝛼 in this study since these parameters are data-dependent. However, the 

results indicated that, all regularized portfolios performed better than the standard 

index-tracking portfolio. Among the regularized portfolios, an investor can make 
his own decision by evaluating various performance criteria such as the tracking 

error, PoA, PoS, Sharpe ratio and etc. based on the goals of the target portfolio. 
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